Title: The White Dwarf in EM Cygni: Beyond The Veil Authors: P. Godon, E.M. Sion, P.E. Barrett, A.P. Linnell
We present a spectral analysis of the FUSE spectra of EM Cygni, a Z Cam DN system. The FUSE spectrum, obtained in quiescence, consists of 4 individual exposures (orbits): two exposures, at orbital phases phi ~ 0.65 and phi ~ 0.90, have a lower flux; and two exposures, at orbital phases phi =0.15 and 0.45, have a relatively higher flux. The change of flux level as a function of the orbital phase is consistent with the stream material (flowing over and below the disk from the hot spot region to smaller radii) partially masking the white dwarf. We carry out a spectral analysis of the FUSE data, obtained at phase 0.45 (when the flux is maximual, using the codes TLUSTY and SYNSPEC. Using a single white dwarf spectral component, we obtain a white dwarf temperature of 40,000K, rotating at 100km/s. The white dwarf, or conceivably, the material overflowing the disk rim, shows suprasolar abundances of silicon, sulphur and possibly nitrogen. Using a white dwarf+disk composite model, we obtain that the white dwarf temperature could be even as high as 50,000K, contributing more than 90% of the FUV flux, and the disk contributing less than 10% must have a mass accretion rate reaching 1.E-10 Msun/yr. In both cases, however, we obtain that the white dwarf temperature is much higher than previously estimated.
Title: EM Cygni: a study of its eclipse timings Authors: Sz. Csizmadia, Zs. Nagy, T. Borkovits, T. Hegedus, I. B. Biro, Z. T. Kiss
EM Cygni is a Z Cam-subtype eclipsing dwarf nova. Its orbital period variations were reported in the past but the results were in conflict to each other while other studies allowed the possibility of no period variation. In this study we report accurate new times of minima of this eclipsing binary and update its O-C diagram. We also estimate the mass transfer rate in EM Cygni system and conclude that the mass transfer is far from the critical value. The mass transfer rate determined from the eclipse timings is in agreement with the spectroscopically determined value.