Searching for a twist in neutron spin axis, IU physicists find nothing - and that's something
Besides understanding how much dark matter and dark energy there is -- about 95 percent of the universe -- scientists also want to know more about what dark matter and dark energy are not, as opposed to what they are. Indiana University's Mike Snow, a nuclear physicist who specialises in precision measurements using low energy neutrons, now has another "what they are not" to add to the list. Read more
An anomaly in the behaviour of ordinary particles may point to the existence of mirror particles that could be candidates for dark matter responsible for the missing mass of the universe. In a paper recently published in EPJC, researchers hypothesised the existence of mirror particles to explain the anomalous loss of neutrons observed experimentally. The existence of such mirror matter had been suggested in various scientific contexts some time ago, including the search for suitable dark matter candidates. Theoretical physicists Zurab Berezhiani and Fabrizio Nesti from the University of l'Aquila, Italy, reanalysed the experimental data obtained by the research group of Anatoly Serebrov at the Institut Laue-Langevin, France. It showed that the loss rate of very slow free neutrons appeared to depend on the direction and strength of the magnetic field applied. This anomaly could not be explained by known physics. Read more
Title: Cubic neutrons Authors: Felipe J. Llanes-Estrada, Gaspar Moreno Navarro (Univ. Complutense Madrid)
The neutron is largely spherical and incompressible in atomic nuclei. These two properties are however challenged in the extreme pressure environment of a neutron star. Our variational computation within the Cornell model of Coulomb gauge QCD shows that the neutron (and also the Delta-3/2 baryon) can adopt cubic symmetry at an energy cost of about 150 MeV. Balancing this with the free energy gained by tighter neutron packing, we expose the possible softening of the equation of state of neutron matter.
Eiskalt abgebremst: Mainzer Physiker erzeugen ultrakalte Neutronen am TRIGA-Reaktor Wissenschaftler am Forschungsreaktor TRIGA der Johannes Gutenberg-Universität Mainz haben erstmals die Geschwindigkeitsverteilung von ultrakalten Neutronen (UCN) nach Austritt aus einem Deuterium-Eiskristall bestimmt.
"Damit sind wir ein gutes Stück vorangekommen, um künftig am Mainzer Forschungsreaktor grobe Mengen ultrakalter Neutronen zu speichern und sie genauer zu untersuchen", erklärt Prof. Dr. Christian Plonka-Spehr vom Institut für Kernchemie.
Künftige Experimente sollen dabei helfen, mehr über das Neutron und seine Eigenschaften zu erfahren und dadurch einen Einblick in die Prozesse direkt nach dem Urknall und im frühen Universum zu erhalten. Die Erzeugung von ultrakalten Neutronen ist den Mainzern im Februar 2006 in enger Zusammenarbeit mit dem Physik Department der TU München erstmals gelungen. Seitdem wird dieser Bereich kontinuierlich ausgebaut.