NASA's Chandra Suggests Rare Explosion Created Our Galaxy's Youngest Black Hole
New data from NASA's Chandra X-ray Observatory suggest a highly distorted supernova remnant may contain the most recent black hole formed in the Milky Way galaxy. The remnant appears to be the product of a rare explosion in which matter is ejected at high speeds along the poles of a rotating star. The remnant, called W49B, is about a thousand years old as seen from Earth and located about 26,000 light-years away. Read more
Title: The Galactic Supernova Remnant W49B Likely Originates from a Jet-Driven, Core-Collapse Explosion Authors: Laura A. Lopez (MIT), Enrico Ramirez-Ruiz (UCSC), Daniel Castro (MIT), Sarah Pearson (DARK Cosmology Centre)
We present results from a 220-ks observation of the galactic supernova remnant (SNR) W49B using the Advanced CCD Imaging Spectrometer (ACIS) on board the Chanrda X-ray Observatory. We exploit these data to perform detailed spatially-resolved spectroscopic analyses across the SNR with the aim to investigate the thermodynamic properties and explosive origin of W49B. We find substantial variation in the electron temperature and absorbing column toward W49B, and we show that the mean metal abundances are consistent with the predicted yields in models of bipolar/jet-driven core-collapse SNe. Furthermore, we set strict upper limits on the X-ray luminosity of any undetected point sources, and we exclude the presence of a neutron star associated with W49B. We conclude that the morphological, spectral, and environmental characteristics of W49B are indicative of a bipolar Type Ib/Ic SN origin, making it the first of its kind to be discovered in the Milky Way.
One of the first two "fossil" fireballs ever detected glows deep in the supernova remnant W49B, according to a new study based on data from the Japan-U.S. Suzaku x-ray observatory. In the composite picture above, red and green represent infrared images of the remnant taken by ground-based telescopes, while blue shows x-ray data from NASA's Chandra X-ray Observatory. W49B, which sits 35,000 light-years from Earth, is the glowing cloud of gas and dust left behind by the death of a massive star. As such stars age, they shed their outer layers, forming cocoons of gas and dust around dense cores. When the core explodes, it's believed that the initial blast wave can heat the cocoon to temperatures as high as 100 million degrees Fahrenheit (55 million degrees Celsius) - 10,000 times hotter than the surface of the sun. Read more