Title: Timing the main-sequence-star binary pulsar J1740-3052 Authors: E. C. Madsen, I. H. Stairs, M. Kramer, F. Camilo, G. B. Hobbs, G. H. Janssen, A. G. Lyne, R. N. Manchester, A. Possenti, B. W. Stappers
PSR J1740-3052 is a young pulsar in orbit around a companion that is most likely a B-type main-sequence star. Since its discovery more than a decade ago, data have been taken at several frequencies with instruments at the Green Bank, Parkes, Lovell, and Westerbork telescopes. We measure scattering timescales in the pulse profiles and dispersion measure changes as a function of binary orbital phase and present evidence that both of these vary as would be expected due to a wind from the companion star. Using pulse arrival times that have been corrected for the observed periodic dispersion measure changes, we find a timing solution spanning 1997 November to 2011 March. This includes measurements of the advance of periastron and the change in the projected semimajor axis of the orbit and sets constraints on the orbital geometry. From these constraints, we estimate that the pulsar received a kick of at least ~50 km/s at birth. A quasi-periodic signal is present in the timing residuals with a period of 2.2 times the binary orbital period. The origin of this signal is unclear.
Title: The binary companion of PSR J1740-3052 Authors: C.G. Bassa, W.F. Brisken, G. Nelemans, I.H. Stairs, B.W. Stappers, M. Kramer
We report on the identification of a near-infrared counterpart to the massive (>11 Msun) binary companion of pulsar J1740-3052. An accurate celestial position of PSR J1740-3052 is determined from interferometric radio observations. Adaptive optics corrected near-infrared imaging observations show a counterpart at the interferometric position of the pulsar. The counterpart has Ks=15.87±0.10 and J-Ks>0.83. Based on distance and absorption estimates from models of the Galactic electron and dust distributions these observed magnitudes are consistent with those of a main-sequence star as the binary companion. We argue that this counterpart is the binary companion to PSR J1740-3052 and thus rule out a stellar mass black hole as the pulsar companion.