Title: Sunspot Observations during the Maunder Minimum from the Correspondence of John Flamsteed Author: V.M.S. Carrasco, J.M. Vaquero
We compile and analyze the sunspot observations made by John Flamsteed for the period 1672-1703, corresponding to the second part of the Maunder Minimum, which appear in the correspondence of this famous astronomer. We include in an appendix the original texts of the sunspot records kept by Flamsteed. We compute an estimate of the level of solar activity using these records, and compare the results with the latest reconstructions of solar activity during the Maunder Minimum, obtaining values characteristic of a grand solar minimum. Finally, we discuss a phenomenon observed and described by Stephen Gray in 1705 that has been interpreted as a white-light flare.
Title: Newly found sunspot observations by Peter Becker from Rostock for 1708, 1709, and 1710 Author: Ralph Neuhaeuser (U Jena), Rainer Arlt (AIP Potsdam), Elvira Pfitzner (Rostock), Susanne Richter (U Jena)
We present a few newly found old sunspot observations from the years AD 1708, 1709, and 1710, which were obtained by Peter Becker from Rostock, Germany. For 1709, Becker gave a detailed drawing: he observed a sunspot group made up of two spots on Jan 5, 6, and 7, and just one of the two spots was observed on Jan 8 and 9. We present his drawing and his explanatory text. We can measure the latitude and longitude of these two spots and estimate their sizes for all five days. While the spots and groups in 1708 and the spot on four of the five days in January 1709 were known before from other observers (e.g. Hoyt & Schatten 1998), the location of the spots in early January 1709 were not known before, so that they can now be considered in reconstructed butterfly diagrams. The sunspots detected by Becker on 1709 Jan 5 and 1710 Sep 10 were not known before at all, as the only observer known for those two dates, La Hire, did not detect that spot (group). We estimate new group sunspot numbers for the relevant days, months, and years. The time around 1708--1710 is important, because it documents the recovery of solar activity towards the end of the Maunder Grand Minimum. We also show two new spot observations from G. Kirch for 1708 Sep 13 \& 14 as described in his letter to Wurzelbaur (dated Berlin AD 1708 Dec 19).
Title: The Maunder minimum (1645--1715) was indeed a Grand minimum: A reassessment of multiple datasets Author: Ilya G. Usoskin, Rainer Arlt, Eleanna Asvestari, Ed Hawkins, Maarit Käpylä, Gennady A. Kovaltsov, Natalie Krivova, Michael Lockwood, Kalevi Mursula, Jezebel O'Reilly, Matthew Owens, Chris J. Scott, Dmitry D. Sokoloff, Sami K. Solanki, Willie Soon, José M. Vaquero
Aims: Although the time of the Maunder minimum (1645--1715) is widely known as a period of extremely low solar activity, claims are still debated that solar activity during that period might still have been moderate, even higher than the current solar cycle #24. We have revisited all the existing pieces of evidence and datasets, both direct and indirect, to assess the level of solar activity during the Maunder minimum. Methods: We discuss the East Asian naked-eye sunspot observations, the telescopic solar observations, the fraction of sunspot active days, the latitudinal extent of sunspot positions, auroral sightings at high latitudes, cosmogenic radionuclide data as well as solar eclipse observations for that period. We also consider peculiar features of the Sun (very strong hemispheric asymmetry of sunspot location, unusual differential rotation and the lack of the K-corona) that imply a special mode of solar activity during the Maunder minimum. Results: The level of solar activity during the Maunder minimum is reassessed on the basis of all available data sets. Conclusions: We conclude that solar activity was indeed at an exceptionally low level during the Maunder minimum. Although the exact level is still unclear, it was definitely below that during the Dalton minimum around 1800 and significantly below that of the current solar cycle #24. Claims of a moderate-to-high level of solar activity during the Maunder minimum are rejected at a high confidence level.
Title: Convective Dynamo Simulation with a Grand Minimum Author: Kyle Augustson, Sacha Brun, Mark Miesch, Juri Toomre
The global-scale dynamo action achieved in a simulation of a Sun-like star rotating at thrice the solar rate is assessed. The 3-D MHD Anelastic Spherical Harmonic (ASH) code, augmented with a viscosity minimization scheme, is employed to capture convection and dynamo processes in this G-type star. The simulation is carried out in a spherical shell that encompasses 3.8 density scale heights of the solar convection zone. It is found that dynamo action with a high degree of time variation occurs, with many periodic polarity reversals occurring roughly every 6.2 years. The magnetic energy also rises and falls with a regular period. The magnetic energy cycles arise from a Lorentz-force feedback on the differential rotation, whereas the processes leading to polarity reversals are more complex, appearing to arise from the interaction of convection with the mean toroidal fields. Moreover, an equatorial migration of toroidal field is found, which is linked to the changing differential rotation, and potentially to a nonlinear dynamo wave. This simulation also enters a grand minimum lasting roughly 20~years, after which the dynamo recovers its regular polarity cycles.
Title: The sunspot observations by Rheita in 1642 Author: Juan Manuel Gómez, José Manuel Vaquero
The correct interpretation of a fragment of Rheita about a sunspot observation in 1642 has crucial importance in estimating the amplitude of the solar cycle just before the Maunder Minimum. We show here that this record has been misinterpreted, presenting the original Latin text and a modern English translation.
Title: Sunspots during the Maunder Minimum from Machina Coelestis by Hevelius Author: V.M.S. Carrasco, J. Villalba Alvarez, J.M. Vaquero
We revisited the sunspot observations published by Johannes Hevelius in his book Machina Coelestis (1679) corresponding to the period 1653-1675 (just in the middle of the Maunder Minimum). We show detailed translations of the original Latin texts describing the sunspot records and provide the general context of these sunspot observations. From this source only, we present an estimate of the annual values of the Group Sunspot Number based only on the records that explicitly inform about the presence or absence of sunspots. Although we obtain very low values of the Group Sunspot Number, in accordance with a grand minimum of solar activity, these values are significantly higher in general than the values provided by Hoyt and Schatten (1998) for the same period.
Title: Sunspot latitudes during the Maunder Minimum: a machine-readable catalogue from previous studies Author: J. M. Vaquero, J. M. Nogales, F. Sánchez-Bajo
The Maunder Minimum (1645-1715 approximately) was a period of very low solar activity and a strong hemispheric asymmetry, with most of sunspots in the southern hemisphere. In this paper, two data sets of sunspot latitudes during the Maunder minimum have been recovered for the international scientific community. The first data set is constituted by latitudes of sunspots appearing in the catalogue published by Gustav Spörer nearly 130 years ago. The second data set is based on the sunspot latitudes displayed in the butterfly diagram for the Maunder Minimum which was published by Ribes and Nesme-Ribes almost 20 years ago. We have calculated the asymmetry index using these data sets confirming a strong hemispherical asymmetry in this period. A machine-readable version of this catalogue with both data sets is available in the Historical Archive of Sunspot Observations (this http URL) and in the appendix of this article.
Title: Redefining the limit dates for the Maunder Minimum Author: J. M. Vaquero, R. M. Trigo
The Maunder Minimum corresponds to a prolonged minimum of solar activity a phenomenon that is of particular interest to many branches of natural and social sciences commonly considered to extend from 1645 until 1715. However, our knowledge of past solar activity has improved significantly in recent years and, thus, more precise dates for the onset and termination of this particularly episode of our Sun can be established. Based on the simultaneous analysis of distinct proxies we propose a redefinition of the Maunder Minimum period with the core "Deep Maunder Minimum" spanning from 1645 to 1700 (that corresponds to the Grand Minimum state) and a wider "Extended Maunder Minimum" for the longer period 1618-1723 that includes the transition periods.
Title: The origin of grand minima in the sunspot cycle Authors: Arnab Rai Choudhuri, Bidya Binay Karak
One of the most striking aspects of the 11-year sunspot cycle is that there have been times in the past when some cycles went missing, a most well-known example of this being the Maunder minimum during 1645-1715. Analyses of cosmogenic isotopes (C14 and Be10) indicated that there were about 27 grand minima in the last 11,000 yr, implying that about 2.7% of the solar cycles had conditions appropriate for forcing the Sun into grand minima. We address the question how grand minima are produced and specifically calculate the frequency of occurrence of grand minima from a theoretical dynamo model. We assume that fluctuations in the poloidal field generation mechanism and the meridional circulation produce irregularities of sunspot cycles. Taking these fluctuations to be Gaussian and estimating the values of important parameters from the data of last 28 solar cycles, we show from our flux transport dynamo model that about 1-4% of the sunspot cycles may have conditions suitable for inducing grand minima.
The Little Ice Age was caused by the cooling effect of massive volcanic eruptions, and sustained by changes in Arctic ice cover, scientists conclude. An international research team studied ancient plants from Iceland and Canada, and sediments carried by glaciers. They say a series of eruptions just before 1300 lowered Arctic temperatures enough for ice sheets to expand. Read more