Title: The ultracool dwarf DENIS-P J104814.7-395606. Chromospheres and coronae at the low-mass end of the main-sequence Authors: B.Stelzer (1), J.Alcala (2), K.Biazzo (2), B.Ercolano (3), I.Crespo-Chacon (4), J.Lopez-Santiago (4), R.Martinez-Arnaiz (4), J.H.M.M.Schmitt (5), E.Rigliaco (6), F.Leone (7), G.Cupani (8) ((1) INAF-Palermo, (2) INAF-Napoli, (3) Universitaetssternwarte Muenchen, (4) Universidad Complutense Madrid, (5) Hamburger Sternwarte, (6) University of Arizona, (7) INAF-Catania, (8) INAF-Trieste)
We have obtained an XMM-Newton observation and a broad-band spectrum from the ultraviolet to the near infrared with X-Shooter for one of the nearest M9 dwarfs, DENIS-P J1048-3956 (4pc). We integrate these data by a compilation of activity parameters for ultracool dwarfs from the literature with the aim to advance our understanding of these objects by comparing them to early-M type dwarf stars and the Sun. Our deep XMM-Newton observation has led to the first X-ray detection of DENIS-P J1048-3956 (log Lx = 25.1) as well as the first measurement of its V band brightness (V = 17.35mag). Flux-flux relations between X-ray and chromospheric activity indicators are here for the first time extended into the regime of the ultracool dwarfs. The approximate agreement of DENIS-P J1048-3956 and other ultracool dwarfs with flux-flux relations for early-M dwarfs suggests that the same heating mechanisms work in the atmospheres of ultracool dwarfs, albeit weaker as judged from their lower fluxes. The observed Balmer decrements of DENIS-P J1048-3956 are compatible with optically thick plasma in LTE at low, nearly photospheric temperature or optically thin LTE plasma at 20000K. Describing the decrements with CaseB recombination requires different emitting regions for Halpha and the higher Balmer lines. The high observed Halpha/Hbeta flux ratio is also poorly fitted by the optically thin models. We derive a similarly high value for the Halpha/Hbeta ratio of vB10 and LHS2065 and conclude that this may be a characteristic of ultracool dwarfs. We add DENIS-P J1048-3956 to the list of ultracool dwarfs detected in both the radio and the X-ray band. The Benz-Guedel relation between radio and X-ray luminosity of late-type stars is well-known to be violated by ultracool dwarfs. We speculate on the presence of two types of ultracool dwarfs with distinct radio and X-ray behaviour.
Title: The magnetosphere of the ultracool dwarf DENIS 1048-3956 Authors: V. Ravi, G. Hallinan, G. Hobbs, D. J. Champion
Ultracool dwarfs, the least-massive contributors to the stellar mass function, exhibit striking magnetic properties that are inconsistent with trends for more massive stars. Here, we present the widest-band radio observations to date of an ultracool dwarf, DENIS-P J104814.9-395604, in four 2 GHz bandwidths between wavelengths of 1 cm and 10 cm. These data were obtained with the Australia Telescope Compact Array using the new Compact Array Broadband Backend instrument. We detected a stable negatively-sloped power-law spectrum in total intensity, with spectral index alpha=1.71±0.09. Circular polarization fractions between 0.25 and 0.4 were found at the low-frequency end of our detection band. We interpret these results as indicative of gyrosynchrotron emission. We suggest that the radio emission originates from beyond the co-rotation radius, R_C, of the star. Adopting this model, we find R_C between 1.2-2.9 R_*, and a non-thermal electron density and magnetic field strength between 10^(5)-10^(7.2) cm^(-3) and 70-260 G respectively at R_C. The model accounts for the violation of the Guedel-Benz relation between X-ray and radio luminosities of low-mass stars by DENIS-P J104814.9-395604.