Researchers at the University of Warwick have found a unique feuding double white dwarf star system where each star appears to have been stripped down to just its helium. We know of just over 50 close double white dwarfs but this was only the second ever eclipsing close white dwarf pair to be found. The University of Warwick astronomers Steven Parsons and Professor Tom Marsh were able to use the fact that the stars eclipse each other when seen from Earth to make particularly detailed observations of the system. Read more
Title: A deeply eclipsing detached double helium white dwarf binary Authors: S. G. Parsons, T. R. Marsh, B. T. Gänsicke, A. J. Drake, D. Koester
Using Liverpool Telescope+RISE photometry we identify the 2.78 hour period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100K primary star and a 10,500K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy we measure the radial velocities of both components of the binary from the H{\alpha} absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M1 = 0.283 ±0.064Msun and M2 = 0.274 ±0.034Msun, making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.