Title: Numerical modelling of Auriga's Wheel - a new ring galaxy Authors: Rory Smith, Richard R. Lane, Blair C. Conn, Michael Fellhauer
We model the formation of Auriga's Wheel - a recently discovered collisional ring galaxy. Auriga's Wheel has a number of interesting features including a bridge of stars linking the neighbouring elliptical to the ring galaxy, and evidence for components of expansion and rotation within the ring. Using N-body/SPH modelling, we study collisions between an elliptical galaxy and a late-type disk galaxy. A near direct collision, with a mildly inclined disk, is found to reasonably reproduce the general system morphology ~50 Myr following the collision. The collision must have a relatively low velocity (initially ~150 km s^{-1}) in order to form the observed bridge, and simultaneously match the galaxies separation. Our best-match model suggests the total disk galaxy is ~5 times more massive than the elliptical. We find that the velocity of expansion of the ring is sensitive to the mass of the elliptical, while insensitive to the encounter velocity. We evolve our simulation beyond the current epoch to study the future destiny of the galaxy pair. In our model, the nucleus moves further away from the plane of the ring in the direction of the stellar bridge. The nucleus eventually merges with the elliptical galaxy ~100 Myr after the present time. The ring continues to expand for ~200 Myr before collapsing back. The low initial relative velocity of the two galaxies will eventually result in a complete merger.
Title: A New Collisional Ring Galaxy at z = 0.111: Auriga's Wheel Authors: Blair C. Conn, Anna Pasquali, Emanuela Pompei, Richard R. Lane, André-Nicolas Chené, Rory Smith, Geraint F. Lewis
We report the serendipitous discovery of a collision ring galaxy, identified as 2MASX J06470249+4554022, which we have dubbed 'Auriga's Wheel', found in a SUPRIME-CAM frame as part of a larger Milky Way survey. This peculiar class of galaxies is the result of a near head-on collision between typically, a late type and an early type galaxy. Subsequent GMOS-N long-slit spectroscopy has confirmed both the relative proximity of the components of this interacting pair and shown it to be the most distant spectroscopically confirmed collisional ring galaxy with a redshift of 0.111. Analysis of the spectroscopy reveals that the late type galaxy is a LINER class Active Galactic Nuclei while the early type galaxy is also potentially an AGN candidate, this is very uncommon amongst known collision ring galaxies. Preliminary modelling of the ring finds an expansion velocity of ~200 kms^-1 consistent with our observations, making the collision about 50 Myr old. The ring currently has a radius of about 10 kpc and a bridge of stars and gas is also visible connecting the two galaxies.