Title: Gravitational detection of a low-mass dark satellite at cosmological distance Authors: S. Vegetti, D. J. Lagattuta, J. P. McKean, M. W. Auger, C. D. Fassnacht, L. V. E. Koopmans
The mass-function of dwarf satellite galaxies that are observed around Local Group galaxies substantially differs from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at z = 0.222 was recently found using a new method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a 1.9 ±0.1 x 10^8 M_sun dark satellite in the Einstein-ring system JVAS B1938+666 at z = 0.881, where M_sun denotes solar mass. This satellite galaxy has a mass similar to the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be alpha = 1.1^+0.6_-0.4, with an average mass-fraction of f = 3.3^+3.6_-1.8 %, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.
Dark matter galaxy hints seen 10bn light-years away
Astronomers have spotted a "dwarf" galaxy some 10 billion light-years away which may be made mostly of the mysterious material called dark matter. The dwarf was found using a technique called gravitational lensing. It is only the second dark dwarf ever seen, and it is by far the most distant. Read more
Scientists have long struggled to detect the dim dwarf galaxies that orbit our own galaxy. So it came as a surprise on Jan. 18 when a team of astronomers using Keck II telescopes adaptive optics has announced the discovery of a dwarf galaxy halfway across the universe. The new dwarf galaxy found by MITs Dr. Simona Vegetti and colleagues is a satellite of an elliptical galaxy almost 10 billion light-years away from Earth. The team detected it by studying how the massive elliptical galaxy, called JVAS B1938 + 666, serves as a gravitational lens for light from an even more distant galaxy directly behind it. Their discovery was published in the Jan. 18 online edition of the journal Nature. Read more