Title: On the Weyl Curvature Hypothesis Authors: Ovidiu-Cristinel Stoica (Version, v4)
The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein's equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmological models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis.
Title: On the Weyl Curvature Hypothesis Authors: Ovidiu-Cristinel Stoica
The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big Bang singularity. In previous papers it has been proposed an equivalent form of Einstein's equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis.
The Weyl curvature hypothesis, which arises in the application of Albert Einstein's general theory of relativity to physical cosmology, was introduced by the British mathematician and theoretical physicist Sir Roger Penrose in an article in 1979[1] in an attempt to provide explanations for two of the most fundamental issues in physics. On the one hand one would like to account for a Universe which on its largest observational scales appears remarkably spatially homogeneous and isotropic in its physical properties (and so can be described by a simple Friedmann-Lemaître model), on the other hand there is the deep question on the origin of the second law of thermodynamics. Read more