* Astronomy

Members Login
Username 
 
Password 
    Remember Me  
Post Info TOPIC: KIC 10526294


L

Posts: 131433
Date:
KIC 10526294
Permalink  
 


Title: KIC 10526294: a slowly rotating B star with rotationally split quasi-equally spaced gravity modes
Author: P. I. Pápics, E. Moravveji, C. Aerts, A. Tkachenko, S. A. Triana, S. Bloemen, J. Southworth

Massive stars are important for the chemical enrichment of the universe. Since internal mixing processes influence their life, it is of high importance to place constraints on the corresponding physical parameters, such as core overshooting and the internal rotation profile, to calibrate their stellar structure and evolution models. Although asteroseismology was shown to be able to deliver the most precise constraints so far, the number of detailed seismic studies delivering quantitative results is limited. Our goal is to extend this limited sample with an in-depth case study and provide a well constrained set of asteroseismic parameters, contributing to the ongoing mapping efforts of the instability strips of the beta Cep and SPB stars. We derived fundamental parameters from high-resolution spectra using spectral synthesis techniques. We used custom masks to obtain optimal light curves from the original pixel level data from the Kepler satellite. We used standard time-series analysis tools to construct a set of significant pulsation modes which provide the basis for the seismic analysis carried out afterwards. We find that KIC 10526294 is a cool SPB star, one of the slowest rotators ever found. Despite this fact, the length of Kepler observations is sufficient to resolve narrow rotationally split multiplets for each of its nineteen quasi-equally spaced dipole modes. The number of detected consecutive (in radial order) dipole modes in this series is higher than ever before. The observed amount of splitting shows an increasing trend towards longer periods, which - largely independent of the seismically calibrated stellar models - points towards a non-rigid internal rotation profile. From the average splitting we deduce a rotation period of 188 d. From seismic modelling we find that the star is young with a central hydrogen mass fraction X_c>0.64; it has a core overshooting alpha_ov<=0.15.

Read more (11790kb, PDF)



__________________
Page 1 of 1  sorted by
 
Quick Reply

Please log in to post quick replies.



Create your own FREE Forum
Report Abuse
Powered by ActiveBoard