* Astronomy

Members Login
Username 
 
Password 
    Remember Me  
Post Info TOPIC: W43A


L

Posts: 131433
Date:
RE: W43A
Permalink  
 


Title: A magnetically collimated jet from an evolved star
Authors: W.H.T. Vlemmings (Jodrell Bank), P.J. Diamond (Jodrell Bank), H. Imai (Kagoshima University)

Planetary nebulae often have asymmetric shapes, which could arise due to collimated jets from evolved stars before evolution to the planetary nebula phase. The source of jet collimation in these stars is unknown. Magnetic fields are thought to collimate outflows that are observed in many other astrophysical sources, such as active galactic nuclei and proto-stars, although hitherto there are no direct observations of both the magnetic field direction and strength in any collimated jet. Theoretical models have shown that magnetic fields could also be the dominant source of collimation of jet in evolved stars.
Here we report measurements of the polarisation of water vapour masers that trace the precessing jet emanating from the asymptotic giant branch star W43A at 2.6 kpc from the Sun, which is undergoing rapid evolution into a planetary nebula. The masers occur in two clusters at opposing tips of the jets, ~1,000 AU from the star. We find direct evidence that the magnetic field is collimating the jet.

Read more (PDF)

__________________


L

Posts: 131433
Date:
K3-35
Permalink  
 


In 2001 astronomers used the VLA to observe a planetary nebula called K3-35, 16,000 light-years from Earth in the constellation Vulpecula (the small fox).



The old star has a doughnut-shaped ring of gas around its centre and lobes of outflowing material, similar to structures seen in other planetary nebulae.

__________________


L

Posts: 131433
Date:
W43A
Permalink  
 


Magnetic Fields Sculpt Narrow Jets From Dying Star

Molecules spewed outward from a dying star are confined into narrow jets by a tightly-wound magnetic field, according to astronomers who used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to study an old star about 8,500 light-years from Earth.

The star, called W43A, in the constellation Aquila, is in the process of forming a planetary nebula, a shell of brightly-glowing gas lit by the hot ember into which the star will collapse. In 2002, astronomers discovered that the aging star was ejecting twin jets of water molecules. That discovery was a breakthrough in understanding how many planetary nebulae are formed into elongated shapes.

"The next question was, what is keeping this outpouring of material confined into narrow jets? Theoreticians suspected magnetic fields, and we now have found the first direct evidence that a magnetic field is confining such a jet. Magnetic fields previously have been detected in jets emitted by quasars and protostars, but the evidence was not conclusive that the magnetic fields were actually confining the jets. These new VLBA observations now make that direct connection for the very first time" - Wouter Vlemmings, a Marie Curie Fellow working at the Jodrell Bank Observatory of the University of Manchester in England.

IMAGE
Artist's Conception Shows Tightly-Wound Magnetic Field Confining Jet.

By using the VLBA to study the alignment, or polarisation, of radio waves emitted by water molecules in the jets, the scientists were able to determine the strength and orientation of the magnetic field surrounding the jets.

"Our observations support recent theoretical models in which magnetically-confined jets produce the sometimes-complex shapes we see in planetary nebulae" - Philip Diamond, also of Jodrell Bank Observatory.

During their "normal" lives, stars similar to our Sun are powered by the nuclear fusion of hydrogen atoms in their cores. As they near the end of their lives they begin to blow off their outer atmospheres and eventually collapse down to a white dwarf star about the size of Earth. Intense ultraviolet radiation from the white dwarf causes the gas thrown off earlier to glow, producing a planetary nebula. Astronomers believe that W43A is in the transition phase that will produce a planetary nebula. That transition phase, they say, is probably only a few decades old, so W43A offers the astronomers a rare opportunity to watch the process.
While the stars that produce planetary nebulae are spherical, most of the nebulae themselves are not. Instead, they show complex shapes, many elongated. The earlier discovery of jets in W43A showed one mechanism that could produce the elongated shapes. The latest observations will help scientists understand the mechanisms producing the jets.



The water molecules the scientists observed are in regions nearly 100 billion miles from the old star, where they are amplifying, or strengthening, radio waves at a frequency of 22 GHz. Such regions are called masers, because they amplify microwave radiation the same way a laser amplifies light radiation.
The earlier observations showed that the jets are coming out from the star in a corkscrew shape, indicating that whatever is squirting them out is slowly rotating.
Vlemmings and Diamond worked with Hiroshi Imai of Kagoshima University in Japan. The astronomers reported their work in the March 2 issue of the scientific journal Nature.

The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in space. Dedicated in 1993, the VLBA has an ability to see fine detail equivalent to being able to stand in New York and read a newspaper in Los Angeles.

Read more (PDF)

Source

__________________
Page 1 of 1  sorted by
 
Quick Reply

Please log in to post quick replies.



Create your own FREE Forum
Report Abuse
Powered by ActiveBoard