Title: The Black Hole in the Compact, High-dispersion Galaxy NGC 1271 Author: Jonelle L. Walsh (1,2), Remco C. E. van den Bosch (3), Karl Gebhardt (2), Akn Yldrm (3), Kayhan Gültekin (4), Bernd Husemann (5,6), Douglas O. Richstone (4) ((1) Texas A&M University, (2) The University of Texas at Austin, (3) Max Planck Institute for Astronomy, (4) University of Michigan, (5) European Southern Observatory, (6) Leibniz Institute for Astrophysics Potsdam)
Located in the Perseus cluster, NGC 1271 is an early-type galaxy with a small effective radius of 2.2 kpc and a large stellar velocity dispersion of 276 km/s for its K-band luminosity of 8.9x10^{10} L_sun. We present a mass measurement for the black hole in this compact, high-dispersion galaxy using observations from the integral field spectrograph NIFS on the Gemini North telescope assisted by laser guide star adaptive optics, large-scale integral field unit observations with PPAK at the Calar Alto Observatory, and Hubble Space Telescope WFC3 imaging observations. We are able to map out the stellar kinematics on small spatial scales, within the black hole sphere of influence, and on large scales that extend out to four times the galaxy's effective radius. We find that the galaxy is rapidly rotating and exhibits a sharp rise in the velocity dispersion. Through the use of orbit-based stellar dynamical models, we determine that the black hole has a mass of (3.0^{+1.0}_{-1.1}) x 10^9 M_sun and the H-band stellar mass-to-light ratio is 1.40^{+0.13}_{-0.11} M_sun/L_sun (1-sigma uncertainties). NGC 1271 occupies the sparsely-populated upper end of the black hole mass distribution, but is very different from the Brightest Cluster Galaxies (BCGs) and giant elliptical galaxies that are expected to host the most massive black holes. Interestingly, the black hole mass is an order of magnitude larger than expectations based on the galaxy's bulge luminosity, but is consistent with the mass predicted using the galaxy's bulge stellar velocity dispersion. More compact, high-dispersion galaxies need to be studied using high spatial resolution observations to securely determine black hole masses, as there could be systematic differences in the black hole scaling relations between these types of galaxies and the BCGs/giant ellipticals, thereby implying different pathways for black hole and galaxy growth.
NGC 1271 (also 2MASX J03191127+4121120 and PGC 1236) is a magnitude +14.2 lenticular galaxy located 264 million light-years away in the constellation Perseus.
The galaxy was discovered by French astronomer Guillaume Bigourdan using a 30.48 cm (12 inch) refractor at the Paris Observatory on the 14th November 1884.
Right Ascension 03h 19m 11.3s, Declination +41° 21' 12"