Title: HAT-P-26b: A Neptune-Mass Exoplanet with a Well Constrained Heavy Element Abundance Author: Hannah R. Wakeford, David K. Sing, Tiffany Kataria, Drake Deming, Nikolay Nikolov, Eric D. Lopez, Pascal Tremblin, David S. Amundsen, Nikole K. Lewis, Avi M. Mandell, Jonathan J. Fortney, Heather Knutson, Björn Benneke, Thomas M. Evans
A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System, and has served as a cornerstone of planet formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 microns, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H2O absorption bands with a maximum base-to-peak amplitude of 525ppm in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26b's atmospheric heavy element content [4.8 (-4.0 +21.5) times solar]. This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals.
'Warm Neptune' Has Unexpectedly Primitive Atmosphere
A study combining observations from NASA's Hubble and Spitzer space telescopes reveals that the distant planet HAT-P-26b has a primitive atmosphere composed almost entirely of hydrogen and helium. Located about 437 light years away, HAT-P-26b orbits a star roughly twice as old as the sun. The analysis is one of the most detailed studies to date of a "warm Neptune," or a planet that is Neptune-sized and close to its star. The researchers determined that HAT-P-26b's atmosphere is relatively clear of clouds and has a strong water signature, although the planet is not a water world. This is the best measurement of water to date on an exoplanet of this size. Read more