Many of the supermassive black holes that lurk at the centre of galaxies fire out powerful plasma jets that extend for millions of light years. Though the details of how these jets are produced remain murky, there seems to be only two plausible power sources: one is matter falling onto the black hole, which can't explain all the cases. The other source is the black hole's stored rotational energy. Calculations suggest it should be possible for jets to siphon off energy at the expense of the black hole's rotation as long as magnetic fields are present to connect the black hole to any matter nearby. Persuasive evidence for this has been lacking. Now a team led by Brian McNamara of the University of Waterloo, Canada, has found what may be the strongest evidence yet for jets powered by black hole rotation. It comes from a galaxy called MS0735.6+7421, about 2.6 billion light years from Earth
Monstrous Black Hole Blast in the Core of a Galaxy Cluster This is a composite image of galaxy cluster MS0735.6+7421, located about 2.6 billion light-years away in the constellation Camelopardus.
Position(2000): RA 07h 41m 50.20s | Dec +74° 14' 51.00"
The image represents three views of the region that astronomers have combined into one photograph. The optical view of the galaxy cluster, taken by the Hubble Space Telescope's Advanced Camera for Surveys in February 2006, shows dozens of galaxies bound together by gravity. Diffuse, hot gas with a temperature of nearly 50 million degrees permeates the space between the galaxies. The gas emits X-rays, seen as blue in the image taken with the Chandra X-ray Observatory in November 2003. The X-ray portion of the image shows enormous holes or cavities in the gas, each roughly 640 light-years in diameter -- nearly seven times the diameter of the Milky Way. The cavities are filled with charged particles gyrating around magnetic field lines and emitting radio waves shown in the red portion of image taken with the Very Large Array telescope in New Mexico in June 1993. The cavities were created by jets of charged particles ejected at nearly light speed from a supermassive black hole weighing nearly a billion times the mass of our Sun lurking in the nucleus of the bright central galaxy. The jets displaced more than one trillion solar masses worth of gas. The power required to displace the gas exceeded the power output of the Sun by nearly ten trillion times in the past 100 million years.