An international team of researchers including scientists at the Carnegie Institution has discovered a new chemical compound that consists of a single element - boron. Chemical compounds are conventionally defined as substances consist of two or more elements, but the researchers found that a high pressure and temperature pure boron can assume two distinct forms that bond together to create a novel 'compound' called boron boride.
Because of its low mass, high strength, and response to neutron irradiation, boron has important applications in technology, including nuclear engineering and in extreme environments. The recent work builds on the discovery of superconductivity of boron in 2001 by researchers at the Carnegie Institution's Geophysical Laboratory. That study revealed superconductivity with a relatively high transition temperature for an element, but the underlying structure and mechanism have remained puzzles. The current study is an important step toward understanding the transition to superconductivity in boron under pressure. The research team included theorists and experimentalists using a broad range of high-pressure methods, subjecting materials to pressures above 120,000 atmospheres and temperatures above 1,400 degrees Celsius (approximately 2550 degrees Fahrenheit).
B80, boron buckyball A new study by Rice University scientists predicts the existence and stability of another "buckyball" consisting entirely of boron atoms. The research, which has been published online and is due to appear as an editor's selection in Physical Review Letters, was conducted by Boris Yakobson, professor of mechanical engineering and materials science and of chemistry, and his associates Nevill Gonzalez Szwacki and Arta Sadrzadeh. The original buckyball, a cage-shaped molecule of 60 carbon atoms, was discovered at Rice by Robert Curl, Harold Kroto and Richard Smalley in 1985. The boron buckyball is structurally similar to the original C60 fullerene, but it has an additional atom in the centre of each hexagon, which significantly increases stability.
"This is the first prediction of its possible existence. This has not been observed or even conceived of before. We do hope it may lead to a significant breakthrough" - Boris Yakobson.