Title: gamma Doradus pulsation in two pre-main sequence stars discovered by CoRoT Authors: K. Zwintz, L. Fossati, T. Ryabchikova, A. Kaiser, M. Gruberbauer, T. G. Barnes, A. Baglin, S. Chaintreuil
Pulsations in pre-main sequence stars have been discovered several times within the last years. But nearly all of these pulsators are of delta Scuti-type. gamma Doradus-type pulsation in young stars has been predicted by theory, but lack observational evidence. We present the investigation of variability caused by rotation and (gamma Doradus-type) pulsation in two pre-main sequence members of the young open cluster NGC2264 using high-precision time series photometry from the CoRoT satellite and dedicated high-resolution spectroscopy. Time series photometry of NGC2264VAS20 and NGC 2264VAS87 was obtained by the CoRoT satellite during the dedicated short run SRa01 in March 2008. NGC2264VAS87 was re-observed by CoRoT during the short run SRa05 in December 2011 and January 2012. Frequency analysis was conducted using Period04 and SigSpec. The spectral analysis was performed using equivalent widths and spectral synthesis. The frequency analysis yielded 10 and 14 intrinsic frequencies for NGC2264VAS20 and NGC2264VAS 87, respectively, in the range from 0 to 1.5c/d which are attributed to be caused by a combination of rotation and pulsation. The effective temperatures were derived to be 6380 ±150K for NGC2264VAS20 and 6220 ±150K for NGC2264VAS87. Membership of the two stars to the cluster is confirmed independently using X-ray fluxes, radial velocity measurements and proper motions available in the literature. The derived Li abundances of log n(Li)=3.34 and 3.54 for NGC2264VAS20 and NGC2264VAS87, respectively, are in agreement with the Li abundance for other stars in NGC2264 of similar Teff reported in the literature. We conclude that the two objects are members of NGC2264 and therefore are in their pre-main sequence evolutionary stage. Assuming that part of their variability is caused by pulsation, these two stars might be the first pre-main sequence gamma Doradus candidates.
Title: Spectrum Analysis of Bright Kepler Gamma Doradus Candidate Stars Authors: Andrew Tkachenko, Holher Lehmann, Barry Smalley, Jonas Debosscher, Conny Aerts
Ground-based spectroscopic follow-up observations of the pulsating stars observed by the Kepler satellite mission are needed for their asteroseismic modelling. We aim to derive the fundamental parameters for a sample of 26 Gamma Doradus candidate stars observed by the Kepler satellite mission to accomplish one of the required preconditions for their asteroseismic modelling and to compare our results with the types of pulsators expected from the existing light curve analysis. We use the spectrum synthesis method to derive the fundamental parameters like Teff, logg, [M/H], and vsini from newly obtained spectra and compute the spectral energy distribution from literature photometry to get an independent measure of Teff. We find that most of the derived Teff values agree with the values given in the Kepler Input Catalogue. According to their positions in the HR-diagram three stars are expected Gamma Dor stars, ten stars are expected Delta Sct stars, and seven stars are possibly Delta Sct stars at the hot border of the instability strip. Four stars in our sample are found to be spectroscopic binary candidates and four stars have very low metallicity where two show about solar C abundance. Six of the 10 stars located in the Delta Sct instability region of the HR-diagram show both Delta Sct and Gamma Dor-type oscillations in their light curves implying that Gamma Dor-like oscillations are much more common among the Delta Sct stars than predicted by theory. Moreover, seven stars showing periods in the Delta Sct and the Delta Sct-Gamma Dor range in their light curves are located in the HR-diagram left of the blue edge of the theoretical Delta Sct instability strip. The consistency of these findings with recent investigations based on high-quality Kepler data implies the need for a revision of the theoretical Gamma Dor and Delta Sct instability strips.
Title: A spectroscopic study of southern (candidate) gamma Doradus stars. II. Detailed abundance analysis and fundamental parameters Authors: H. Bruntt, P. De Cat, C. Aerts
The gamma Doradus stars are a recent class of variable main sequence F-type stars located on the red edge of the Cepheid instability strip. They pulsate in gravity modes, and this makes them particularly interesting for detailed asteroseismic analysis, which can provide fundamental knowledge of properties near the convective cores of intermediate-mass main sequence stars. To improve current understanding of gamma Dor stars through theoretical modelling, additional constraints are needed. Our aim is to estimate the fundamental atmospheric parameters and determine the chemical composition of these stars. Detailed analyses of single stars have previously suggested links to Am and lambda Bootis stars, so we wish to explore this interesting connection between chemical peculiarity and pulsation. We have analysed a sample of gamma Dor stars for the first time, including nine bona fide and three candidate members of the class. We determined the fundamental atmospheric parameters and compared the abundance pattern with other A-type stars. We used the semi-automatic software package VWA for the analysis. This code relies on the calculation of synthetic spectra and thus takes line-blending into account. This is important because of the fast rotation in some of the sample stars, and we made a thorough analysis of how VWA performs when increasing vsini. We obtained good results in agreement with previously derived fundamental parameters and abundances in a few selected reference stars with properties similar to the gamma Dor stars. We find that the abundance pattern in the gamma Dor stars is not distinct from the constant A- and F-type stars we analysed.