Title: The Proper Motion of PSR J0205+6449 in 3C 58 Authors: M. F. Bietenholz, V. Kondratiev, S. Ransom, P. Slane, N.Bartel, S. Buchner
We report on sensitive phase-referenced and gated 1.4-GHz VLBI radio observations of the pulsar PSR J0205+6449 in the young pulsar-wind nebula 3C 58, made in 2007 and 2010. We employed a novel technique where the ~105-m Green Bank telescope is used simultaneously to obtain single-dish data used to determine the pulsar's period as well as to obtain the VLBI data, allowing the VLBI correlation to be gated synchronously with the pulse to increase the signal-to-noise. The high timing noise of this young pulsar precludes the determination of the proper motion from the pulsar timing. We derive the position of the pulsar accurate at the milliarcsecond level, which is consistent with a re-determined position from the Chandra X-ray observations. We reject the original tentative optical identification of the pulsar by Shearer and Neustroev (2008), but rather identify a different optical counterpart on their images, with R-band magnitude ~24. We also determine an accurate proper motion for PSR J0205+6449 of (2.3 ± 0.3) mas/yr, corresponding to a projected velocity of only (35 ± 6) km/s for a distance of 3.2 kpc, at p.a. -38 deg. This projected velocity is quite low compared to the velocity dispersion of known pulsars of ~200 km/s. Our measured proper motion does not suggest any particular kinematic age for the pulsar.
Title: The Infrared Detection of the Pulsar Wind Nebula in the Galactic Supernova Remnant 3C 58 Authors: P. Slane, D. J. Helfand, S. P. Reynolds, B. M. Gaensler, A. Lemiere, Z. Wang
We present infrared observations of 3C 58 with the Spitzer Space Telescope and the Canada-France-Hawaii Telescope. Using the IRAC camera, we have imaged the entire source resulting in clear detections of the nebula at 3.6 and 4.5 microns. The derived flux values are consistent with extrapolation of the X-ray spectrum to the infrared band, demonstrating that any cooling break in the synchrotron spectrum must occur near the soft X-ray band. We also detect the torus surrounding PSR J0205+6449, the 65 ms pulsar that powers 3C 58. The torus spectrum requires a break between the infrared and X-ray bands, and perhaps multiple breaks. This complex spectrum, which is an imprint of the particles injected into the nebula, has considerable consequences for the evolution of the broadband spectrum of 3C 58. We illustrate these effects and discuss the impact of these observations on the modelling of broadband spectra of pulsar wind nebulae.