Title: Spectroscopic binaries among Hipparcos M giants I. Data, orbits, and intrinsic variations Authors: B. Famaey, D. Pourbaix, A. Frankowski, S. Van Eck, M. Mayor, S. Udry, A. Jorissen
This paper is a follow-up of the vast effort to collect radial velocity data for stars belonging to the Hipparcos survey. We aim at extending the orbital data available for binaries with M giant primaries. The data will be used in the companion papers of this series to (i) derive the binary frequency among M giants and compare it to that of K giants (Paper II), and (ii) analyse the eccentricity-period diagram and the mass-function distribution (Paper III). Keplerian solutions are fitted to radial-velocity data. However, for several stars, no satisfactory solution could be found, despite the fact that the radial-velocity standard deviation is larger than the instrumental error, because M giants suffer from intrinsic radial-velocity variations due to pulsations. We show that these intrinsic radial-velocity variations can be linked with both the average spectral-line width and the photometric variability. We present an extensive collection of spectroscopic orbits for M giants, with 12 new orbits, plus 17 from the literature. Moreover, to illustrate the fact that the large radial-velocity jitter present in Mira and semi-regular variables may easily be confused with orbital variations, we also present examples of pseudo-orbital variations (in S UMa, X Cnc and possibly in HD 115521, a former IAU radial-velocity standard). Because of this difficulty, M giants involving Mira variables were excluded from our monitored sample. We finally show that the majority of M giants detected as X-ray sources are actually binaries.