Title: Wide binaries as a critical test for Gravity theories Authors: X. Hernandez, M. A. Jimenez, C. Allen
Assuming Newton's gravity and GR to be valid at all scales leads to the dark matter hypothesis as a requirement demanded by the observed dynamics and measured baryonic content at galactic and extragalactic scales. Alternatively, modified gravity scenarios where a change of regime appears at acceleration scales a<a_{0} have been proposed. This modified regime at a<a_{0} will generically be characterised by equilibrium velocities which become independent of distance. Here we identify a critical test in this debate and we propose its application to samples of wide binary stars. Since for 1 solar mass systems the acceleration drops below a_{0} at scales of around 7000 AU, a statistical survey of wide binaries with relative velocities and separations reaching 10^{4} AU and beyond should prove useful to the above debate. We apply the proposed test to the best currently available data. Results show a constant upper limit to the relative velocities in wide binaries which is independent of separation for over three orders of magnitude, in analogy with galactic flat rotation curves in the same a<a_{0} acceleration regime. Our results are suggestive of a breakdown of Kepler's third law beyond a \approx a_{0} scales, in accordance with generic predictions of modified gravity theories designed not to require any dark matter at galactic scales and beyond.
Title: The Evolution of Wide Binary Stars Authors: Yan-Fei Jiang, Scott Tremaine (Version v2)
We study the orbital evolution of wide binary stars in the solar neighbourhood due to gravitational perturbations from passing stars. We include the effects of the Galactic tidal field and continue to follow the stars after they become unbound. For a wide variety of initial semi-major axes and formation times, we find that the number density (stars per unit logarithmic interval in projected separation) exhibits a minimum at a few times the Jacobi radius r_J, which equals 1.7 pc for a binary of solar-mass stars. The density peak interior to this minimum arises from the primordial distribution of bound binaries, and the exterior density, which peaks at \sim 100--300 pc separation, arises from formerly bound binaries that are slowly drifting apart. The exterior peak gives rise to a significant long-range correlation in the positions and velocities of disk stars that should be detectable in large astrometric surveys such as GAIA that can measure accurate three-dimensional distances and velocities.
Title: Unusually Wide Binaries: Are They Wide or Unusual? Authors: Adam L. Kraus, Lynne A. Hillenbrand (Caltech)
We describe an astrometric and spectroscopic campaign to confirm the youth and association of a complete sample of candidate wide companions in Taurus and Upper Sco. Our survey found fifteen new binary systems (3 in Taurus and 12 in Upper Sco) with separations of 3-30" (500-5000 AU) among all of the known members with masses of 2.5-0.012 Msun. The total sample of 49 wide systems in these two regions conforms to only some expectations from field multiplicity surveys. Higher-mass stars have a higher frequency of wide binary companions, and there is a marked paucity of wide binary systems near the substellar regime. However, the separation distribution appears to be log-flat, rather than declining as in the field, and the mass ratio distribution is more biased toward similar-mass companions than the IMF or the field G dwarf distribution. The maximum separation also shows no evidence of a limit at <5000 AU until the abrupt cessation of any wide binary formation at system masses of ~0.3 Msun. We attribute this result to the post-natal dynamical sculpting that occurs for most field systems; our binary systems will escape to the field intact, but most field stars are formed in denser clusters and do not. In summary, only wide binary systems with total masses <0.3 Msun appear to be "unusually wide".