* Astronomy

Members Login
Username 
 
Password 
    Remember Me  
Post Info TOPIC: Young Neutron Stars


L

Posts: 131433
Date:
RXJ1856
Permalink  
 


A decade-long mystery has been solved using data from ESA's X-ray observatory XMM-Newton. The brightest member of the so-called 'magnificent seven' has been found to pulsate with a period of seven seconds.
The discovery casts some doubt on the recent interpretation that this object is a highly exotic celestial object known as a quark star.
The magnificent seven is a collection of young neutron stars. Neutron stars are the dead hearts of once massive stars. They contain about 1.4 times the mass of the Sun but are compressed by gravity into ultra-dense spheres just 10–15 kilometres in diameter. A one Euro coin made of neutron star material would weigh more than the entire population of Earth. What sets the magnificent seven apart from the 1700 other neutron stars seen as radio pulsars is that they are not detected at radio frequencies but their surfaces are hot enough to emit X-rays.
The brightest member of the magnificent seven, RXJ1856 had been a mystery to astronomers since its discovery a decade ago because, despite the fact that it is so bright, no one had been able to find any pulsations and thus determine its rotation rate. That has all changed thanks to the work of Andrea Tiengo and Sandro Mereghetti, Istituto Nazionale di Astrofisica, Milan, Italy.
Using data collected by XMM-Newton, the pair searched for any signs of the long-sought-after pulsations in RXJ1856. They were successful, finding a repeating 7-second pulsation over a 19-hour observation of the source performed in October 2006. They checked other archival data and confirmed the pulsation registered in five other XMM-Newton observations performed between 2002 and 2006.
RXJ1856 is an intriguing object for astronomers. The Hubble Space Telescope has supplied a very accurate distance to the object: 500 light years. This has allowed astronomers to use the brightness of RXJ1856 to estimate its radius. What they found puzzled them. The estimated radius came out to be smaller than 10 kilometres. This was taken as possible evidence that RXJ1856 was an even more exotic object, known as a quark star. In such an object, gravity has crushed the atomic nuclei into their constituent quarks.
Neutron stars slow down because their strong magnetic fields (one million, million times larger than the Earth's field) and fast rotation, produce electromagnetic radiation that drains their rotational energy. Measuring the deceleration of the object would give astronomers a clue about its magnetic field, which is responsible for creating the hot spot that produces the pulsation.

Source

__________________


L

Posts: 131433
Date:
Young Neutron Stars
Permalink  
 



Title: Young Neutron Stars and Their Wind Nebulae
Authors: Patrick Slane

With Teragauss magnetic fields, surface gravity sufficiently strong to significantly modify light paths, central densities higher than that of a standard nucleus, and rotation periods of only hundredths of a second, young neutron stars are sites of some of the most extreme physical conditions known in the Universe.
They generate magnetic winds with particles that are accelerated to energies in excess of a TeV. These winds form synchrotron-emitting bubbles as the particle stream is eventually decelerated to match the general expansion caused by the explosion that formed the neutron stars.



The structure of these pulsar wind nebulae allows us to infer properties of the winds and the pulsating neutron stars themselves.
The surfaces of the stars radiate energy from the rapidly cooling interiors where the physical structure is basically unknown because of our imprecise knowledge of the strong interaction at ultrahigh densities.
Here is a summary of recent measurements that allow us to infer the birth properties of neutron stars and to probe the nature of their winds, the physics of their atmospheres, and the structure of their interiors.

PDF

__________________
Page 1 of 1  sorted by
 
Quick Reply

Please log in to post quick replies.



Create your own FREE Forum
Report Abuse
Powered by ActiveBoard