Title: The large scale magnetic field structure of the spiral galaxy NGC 5775 Authors: Marian Soida, Marita Krause, Ralf-Jürgen Dettmar, Marek Urbanik
In order to better determine the large-scale 3D-structure of magnetic fields in spiral galaxies we present a Faraday rotation analysis of the edge-on spiral galaxy NGC 5775. Deep radio-continuum observations in total power and linear polarization were performed at 8.46 GHz with the VLA and the 100-m Effelsberg telescope. They were analysed together with archival 4.86 and 1.49 GHz VLA-data. We thus can derive rotation measures from a comparison of three frequencies and determine the intrinsic magnetic field structure. A very extended halo is detected in NGC 5775, with magnetic field lines forming an X-shaped structure. Close to the galactic disk the magnetic field is plane-parallel. The scaleheights of the radio emission estimated for NGC 5775 are comparable with other galaxies. The rotation measure distribution varies smoothly on both sides along the major axis from positive to negative values. From the derived distribution of rotation measures and the plane-parallel intrinsic magnetic field orientation along the galactic midplane we conclude that NGC 5775 has an 'even axisymmetric' large-scale magnetic field configuration in the disk as generated by an \alpha \Omega -dynamo which is accompanied by a quadrupolar poloidal field. The magnetic field lines of the plane-parallel component are pointing 'outwards'. The observed X-shaped halo magnetic field, however, cannot be explained by the action of the disk's mean-field dynamo alone. It is probably due to the influence of the galactic wind together with the dynamo action.
This NASA/ESA Hubble Space Telescope image shows the edge-on profile of the slender spiral galaxy NGC 5775. Although the spiral is tilted away from us, with only a thin slither on view, such a perspective can be advantageous for astronomers because the regions above and below the galaxy's disc can be seen much more clearly. For instance, astronomers have previously used the high inclination of this spiral to study the properties of the halo of hot gas that is visible when the galaxy is observed at X-ray wavelengths. The mechanism behind such haloes is unclear, but they are found around spirals that have a high star formation rate, like NGC 5775. Some astronomers think that hot gas from the disc is driven into the halo by supernova explosions, which is then returned to the disc as it cools - like a massive galactic fountain.