* Astronomy

Members Login
Username 
 
Password 
    Remember Me  
Post Info TOPIC: Hot Molecular Core G31.41+0.31


L

Posts: 131433
Date:
Hot Molecular Core G31.41+0.31
Permalink  
 


Title: A Double-Jet System in the G31.41+0.31 Hot Molecular Core
Authors: Luca Moscadelli, Jing Jing Li, Riccardo Cesaroni, Alberto Sanna, Ye Xu, Qizhou Zhang

This work presents a detailed study of the gas kinematics towards the "Hot Molecular Core" (HMC) G31.41+0.31 via multi-epoch VLBI observations of the H2O 22 GHz and CH3OH 6.7 GHz masers, and single-epoch VLBI of the OH 1.6 GHz masers. Water masers present a symmetric spatial distribution with respect to the HMC center, where two nearby (0.2" apart), compact, VLA sources (labelled "A" and "B") are previously detected. The spatial distribution of a first group of water masers, named "J1", is well fit with an elliptical profile, and the maser proper motions mainly diverge from the ellipse center, with average speed of 36 km s-1. These findings strongly suggest that the "J1" water maser group traces the heads of a young (dynamical time of 1.3 10^3 yr), powerful (momentum rate of ~0.2 solar masses yr-1 km s-1), collimated (semi-opening angle ~10 deg) jet emerging from a MYSO located close (within 0.15") to the VLA source "B". Most of the water features not belonging to "J1" present an elongated (about 2" in size), NE--SW oriented (PA = 70 deg), S-shape distribution, which we denote with the label "J2". The elongated distribution of the "J2" group and the direction of motion, approximately parallel to the direction of elongation, of most "J2" water masers suggests the presence of another collimated outflow, emitted from a MYSO near the VLA source "A". The orientation of the "J2" jet agrees well with that (PA = 68 deg) of the well-defined V_LSR gradient across the HMC revealed by previous interferometric, thermal line observations. Furthermore, the "J2" jet is powerful enough to sustain the large momentum rate, 0.3 solar masses yr-1 km s-1, estimated assuming that the V_LSR gradient represents a collimated outflow. These two facts lead us to favour the interpretation of the V_LSR gradient across the G31.41+0.31 HMC in terms of a compact and collimated outflow.

Read more (990kb, PDF)



__________________
Page 1 of 1  sorted by
 
Quick Reply

Please log in to post quick replies.



Create your own FREE Forum
Report Abuse
Powered by ActiveBoard